1. Yuan, P, Tan, Y., Yang, L., Aruffo, E., Ogden, N.H., Bélair, J., Heffernan, J., Arino, J., Watmough, J., Carabin, H., Zhu, H., 2022b. Modelling vaccination and control strategies of outbreaks of monkeypox at gatherings. medRxiv 2022.08.12.22278724; doi:
  2. Yuan, P, Tan, Y., Yang, L., Aruffo, E., Ogden, N.H., Bélair, J., Heffernan, J., Arino, J., Watmough, J., Carabin, H., Zhu, H., 2022a. Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area. medRxiv 2022.06.28.22277038; doi:
  3. Zhou, H., Tang, B., Zhu, H., and Tang, S, 2022: Bifurcation and Dynamic Analyses of Non-monotonic Predator–Prey System with Constant Releasing Rate of Predators. Qual. Theory Dyn. Syst., Vol. 21(10).
  4. Zhang, X., Song, Y., Tang, S., Xue, H., Chen, W., Qin, L., Jia, S., Shen, Y., Zhao, S., Zhu, H., 2022. Models to assess imported cases on the rebound of COVID-19 and design a long-term border control strategy in Heilongjiang Province, China. Mathematical Biosciences and Engineering, Vol. 19 (1), p. 1-33
  1. Li, J., Jin, Z., Wang, Y., Sun, X., Xu, Q., Kang, J., Huang, B., and Zhu, H., 2021: Data-driven dynamical modeling of the transmission of African swine fever in a few places in China.  Transboundary and Emerging Diseases (2021). doi: 10.1111/tbed.14345.
  2. Yuan, P., Chen, L., You, M., and Zhu, H., 2021: Dynamics complexity of generalist predatory mite and the leafhopper pest in tea plantations. J Dyn Diff Equat.,        
  3. Shu, H., Fan, G., and Zhu, H., 2021: Global Hopf bifurcation and dynamics of a stage-structured model with delays for tick population. Journal of Differential Equations. Vol. 284, p. 1-22.
  4. Xue L., Ren X., Magpantay, F., and Zhu, H., 2021: Optimal Control of Mitigation Strategies for Dengue Virus Transmission. Bull Math Biol., Vol. 83 (8).
  5. Chen, H., and Zhu, H., 2021: Global bifurcation studies of a cubic Liénard system. Journal of Mathematical Analysis and Applications, Vol. 496 (2), 124810
  6. Li, J., Ma, M., and Zhu, H., 2021: Modeling the Dynamics of the asymptomatic infection in spreading of COVID-19. submitted
  7. Yuan, P., Aruffo, E., Ogden, N., Gatov, E., Gournis, E., Collier S., Li, Q., Moyles, I., Bouchra, N., and Zhu, H., 2021: School and Community Reopening During the COVID-19 Pandemic: A Mathematical Modeling Study. MedRxiv. doi:
  8. Aruffo, E., Yuan, P., Tan, Y., Gatov, E., Gournis, E., Collier S., Ogden, N., Bélair, J., and Zhu, H., 2021: Community structured model for vaccine strategies to control COVID19 spread: a mathematical study. MedRxiv. doi:
  9. Yuan, P., Aruffo, E., Li, Q., Li, J., Tan, Y., Zheng, T., David, J., Ogden, N., Gatov, E., Gournis, E., Collier S., Sander, B., Fan, G., Heffernan, J., Li, J., Kong, J., Arino, J., Bélair, J., Watmough, J., and Zhu, H., 2021: Evaluating the risk of reopening the border: a case study of Ontario (Canada) to New York (USA) using mathematical modeling. Springer Nature Fields COVID-19 Seminar Proceedings. In press.
  10. David, J., Iyaniwura, S., Yuan, P., Tan, L., Kong, J., Zhu, H., 2021: Modeling the potential impact of indirect transmission on COVID-19 epidemic. MedRxiv. doi:
  11. Xue, L., Jing, S., Sun, W., Liu, M., Peng, Z., Zhu, H., 2021: Evaluating the impact of the travel ban within mainland China on the epidemic of the COVID-19. International Journal of Infectious Disease. Vol. 107, P. 278-283.


  1. Zhu, H., Liu, J., Zhou, X., Chen, X., Qiu, X. Bello, R., Deng, Z. 2020. The Ontario Climate Data Portal, a user-friendly portal of Ontario-specific climate projections. Nature, Scientific Data, 7, 147 (2020).
  2. Yuan, P., Li, J., Aruffo, E., Li, Q. Zheng T., Ogden, N., Sander, b., Heffernan, J., Gatov, E., Gournis, E., Collier, S., Tan, Y., Li, J., Arino, J., Bélair, J., Watmough, J., Kong, J., Moyles, I., Zhu, H., 2020: Efficacy of “stay-at-home” policy and transmission of COVID-19 in Toronto, Canada: a mathematical modeling study. MedRxiv.
  3. Rong, X., Yang, L., Chu, H., Zhou, L., Chen, M., Fan, F., Zhu, H., 2020: The number of public healthcare personnel and the prevention and control of COVID-19. . Acta Mathematicae Applicatae Sinica (Chinese). Vol. 43(2); p. 335-349
  4. Ge, J., He, D., Lin, Z., Zhu, H., and Zhuang, Z., 2020: Four-tier response system and spatial propagation of COVID-19 in China by a network model. . Mathematical Biosciences. Vol. 330.
  5. Xue, L., Jing, J., Miller, J., Sun, W., Li, H., Estrada-Franco, J., Hyman, J., Zhu, H., 2020: A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy. Mathematical Biosciences. Vol. 326
  6. Li, J., Yuan, P., Heffernan, J., Zheng, T., Ogden, N., Sander, B., Li, J., Li, Q., Bélair, J., Kong, J., Aruffo, E., Tan, Y., Jin, Z., Yu, Y., Fan, M., Cui, J., Teng Z., and Zhu, H., 2020: Fangcang shelter hospitals during the COVID-19 epidemic, Wuhan, China. Bulletin of the World Health Organization, 98 (‎12)‎, p. 830 - 841D. 
  7. Li, J., Gao, L., Huang, B., Wang, Y., Jin, Z., Sun, X., Liu, P., Xu, Q., and Zhu, H., 2020: Assessment of regional vulnerability to Africa swine fever in China during 2018/8‐2019/7 based on data envelopment analysis method. Transbound Emerg Dis. 2020 00: p1–10.
  8. Zhang, X., Liu, Q., and Zhu, H., 2020: Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J. Math. Biol. Vol. 81, p. 243–276.
  9. Zhang, J., Li, Y., Yao, M., Zhang, J., Zhu, H., and Jin, Z., 2020: The intensity of quarantine of susceptibles and epidemic development of COVID-19 in Wuhan. Acta Mathematicae Applicatae Sinica (Chinese). Vol. 43 (2); p. 162-173.
  10. Chen, J., Yang, H., Man, R., Wang, W., Sharma, M., Peng, C., Parton, J., Zhu, H., and Deng, Z., 2020:  Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests. Forest Ecology and Management. Vol. 466 (15), 118104
  11. Zhao, H., Wang, L., Oliva, S.M., and Zhu, H., 2020: Modeling and Dynamics Analysis of Zika Transmission with Limited Medical Resources. Bull Math Biol, Vol. 82, 99
  12. Du, Z., Zhang, X. and Zhu, H., 2020: Dynamics of Nonconstant Steady States of the Sel’kov Model with Saturation Effect. J Nonlinear Sci.,


  1. Chen, L., Yuan, P., Pozsgai, G., Chen, P., Zhu, H., and You, M., 2019: The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation Pest Management Science. Vol. 75(12), p. 3371-3380
  2. Zhang, J., Li, D., Jing, W., Jin, Z., and Zhu, H., 2019: Transmission dynamics of a two-strain pairwise model with infection age. Applied Mathematical Modelling. Vol. 71, p. 656-672
  3. Zhang, J., Li, Y., Jin, Z., and Zhu, H., 2019: Dynamics analysis of an avian influenza A (H7N9) epidemic model with vaccination and seasonality Complexity. Vol. 2019
  4. Shan, C., Fan, G., and Zhu, H., 2019: Periodic phenomena and driving mechanisms in the transmission of West Nile virus with maturation time.  Journal of Dynamics and Differential Equations. 32, p. 1003–1026
  5. Ogden, N.H., Lindsay, L.R., Ludwig, A., Morse, A.P., Zheng, H., and Zhu, H., 2019: Weather-based forecasting of mosquito-borne disease outbreaks in Canada.  Canada Communicable Disease Report (CCDR). Vol. 45(5), p. 127-132
  6. Ji, X., Yuan, S., Zhang, T., and Zhu, H., 2019: Stochastic modeling of algal bloom dynamics with delayed nutrient recycling. Math. Biosci. Eng. Vol. 16, p. 1-24
  7. Qiu, Z., Shan, C., and Zhu, H., 2019: Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics. J. Math. Biol. 80, p. 809–834


  1. Zhu, H., Deng, Z., Liu, J., Qiu, X., Chen, X., and Zhou, X., 2018: A Look at Ontario’s Climate of the Future with the Ontario Climate Data Portal (OCDP).  Bulletin of the Canadian Meteorological and Oceanographic Society (CMOS).
  2. Deng, Z., Liu, J., Qiu, X., Zhou, X., Babazadeh, H., Zhu, H., 2018: Projection of Temperature and Precipitation Related Climatic Design Data Using CMIP5 Multi-Model Ensemble.  Journal of Buildings and Sustainability,  Vol. 1 (1), p. 39-54
  3. Zhu, D., Ren, J., and Zhu, H., 2018: Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model. Mathematical Methods in the Applied Sciences 41(7446)
  4. Rong, X., Fan, M., Sun, X., Wang, Y., and Zhu, H., 2018: Impact of disposing stray dogs on risk assessment and control of Echinococcosis in Inner Mongolia. Mathematical Biosciences Vol. 299, p.85–96
  5. Zhang, J., Cosner, C., and Zhu, H., 2018: Two-patch model for the spread of West Nile virus. Bull Math Biol. 80, p.840–863
  6. Yu, D., Madras, N., and Zhu, H., 2018: Temperature-driven population abundance model for Culex pipiens and Culex restuans (Diptera: Culicidae).  Journal of Theoretical Biology. Vol. 443, p. 28-38
  7. Wang, A., Xiao, Y., and Zhu, H., 2018: Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering. 15(3), p. 739-764
  8. Li, X., Ren, J., Campbell, S., Wolkowicz, G., and Zhu, H., 2018: How seasonal forcing influences the complexity of a predator-prey system. Discrete & Continuous Dynamical Systems -B (DCDS-B). 23(2), p. 785-807
  9. Zhang, X., Shan, C., Jin, Z., and Zhu, H., 2019: Complex dynamics of epidemic models on adaptive networks. Journal of Differential Equations. Vol. 266(1), p. 803-832
  10. Chen, L., Yuan, P., You, M., Pozsgai, G., Ma, X., Zhu, H., and Yang, G., 2019: Cover crops enhance natural enemies while help suppressing pests in a tea plantation. Annals of the Entomological Society of America. Vol. 112(4), p. 348-355


  1. Deng, Z., Liu, J., Qiu, X., Zhou, X., and Zhu, H., 2017: Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correctionClim Dyn Vol. 51p. 411–431.
  2. Wang, Y., Pons, W., Fang, J., and Zhu, H., 2017: The impact of weather and stormwater management ponds on the transmission of West Nile virus. Royal Society Open Science, 4: 170017.
  3. Wang, L., Zhao, H., Oliva, S., and Zhu. H., 2017: Modeling the transmission and control of Zika in Brazil. Scientific Reports 7, Article number: 7721, doi:10.1038/s41598-017-07264-y
  4. Lu, H., Song, H., and Zhu, H., 2017: A Series of Population Models for Hyphantria Cunea with Delay and Seasonality.  Mathematical Biosciences, Vol. 292, p. 57–66.
  5. Bao, W., Du, Y., Lin Z., and Zhu, H., 2017: Free boundary models for mosquito range movement driven by climate warming. Journal. Math. Biol. 76, p841–875
  6. Yuan, S., Ji X., and Zhu, H., 2017: Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Math. Biosciences and Engineering (MBE). Vol. 14, 5/6, p. 1477-1498
  7. Chen, M., Fan, M., Yuan X., and Zhu, H., 2017: Effect of seasonal changing temperature on the growth of phytoplankton.  Math. Biosciences and Engineering (MBE). Vol. 14, 5/6, p. 1091-1117
  8. Lin Z. and Zhu, H., Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. Vol. 75, p. 1381–1409
  9. Gao, X., Cao, Y., Ogden, N., Aubin, L., and Zhu, H., 2017: Mixture Markov regression model with application to mosquito surveillance data analysis. Biometrical Journal. 59(3)


  1. Li, J., Song, Y., and Zhu, H., 2017: Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences and Engineering,  Vol. 14 (2),  p. 529-557
  2. Li, M., Sun, G., Yakob, L., Zhu, H., Jin Z., and Zhang, W., 2016: The Driving Force for 2014 Dengue Outbreak in Guangdong, China. PLoS ONE 11(11): e0166211. doi:10.1371/journal.pone.0166211
  3. Qiu, Z., and Zhu, H., 2016: Complex Dynamics of a Nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. DCDS-B Vol. 21, no. 8. pp. 2703–2728
  4. Zhang, X., Tang, S., Cheke, R., and Zhu, H., 2016: Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation. Bull Math Biol. Vol. 78 (10), p. 1968–2010
  5. Shan, C., Yi, Y., and Zhu, H., 2016: Nilpotent Singularities and Dynamics in an SIR Type of Compartmental Model with Hospital Resources. Journal of Differential Equations 260 (2016) 4339–4365.
  6. Ge, J., Lin Z., and Zhu, H., 2016: Environmental risks in a diffusive SIS model incorporating use efficiency of medical resources. DCDS-B Vol. 21 (5), p. 1469-1481
  7. Ren, J., Yu L., and Zhu, H., 2016: Dynamic analysis of discrete-time, continuous-time and delayed feedback jerky equations. Nonlinear Dyn. Vol. 86, p. 107–130
  8. Ji, X., Yuan, S., and Zhu, H., 2016: Analysis of a stochastic model for algal bloom with nutrient recycling. Int. J. Biomathematics. Vol. 9 (6)
  9. Abdelrazec, A., Belair, J., Shan, C., and Zhu, H., 2016: Modeling the Spread and Control of Dengue with Limited Public Health Resources. Mathematical Biosciences 271, p. 136–145


  1. Li, J., Zhao,Y., and Zhu, H., 2015: Bifurcation of an SIS model with nonlinear contact rate, Journal of Mathematical Analysis and Applications, Vol. 432 (2), p. 1119-1138
  2. Chen, M., Fan, M., and Zhu, H., 2015: The dynamics of temperature and light on the growth of phytoplankton. Journal of Theoretical Biology 385, p. 8–19
  3. Deng, Z., Qiu, X., Liu, J., Madras, N., Wang, X., and Zhu, H., 2015: Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs.   Climate Dynamics. 46, p. 2909–2921
  4. Ge, J., Kim, K., Lin, Z., and Zhu, H., 2015: A SIS reaction-diffusion-advection model in a low-risk or high-risk domain. Journal of Differential Equations, Vol. 259 (10), p. 5486-5509
  5. Abdelrazec, A., Lenhart A., and Zhu, H., 2015: Dynamics and Optimal Control of a West Nile Virus Model with Seasonality. Canadian Applied Mathematics Quarterly, Vol. 23 (4), p. 12-33
  6. Rousseau, C., Shan, C., and Zhu, H., 2015: Finite cyclicity of some graphics through a nilpotent point of saddle type inside quadratic systems. Qualitative Theory of Dynamical Systems, Vol. 15 (1), p. 237–256
  7. Ding, C., Qiu, Z., and Zhu, H., 2015: Multi-host transmission dynamics of schistosomiasis and its optimal control. Mathematical Biosciences and Engineering. Mathematical Biosciences, Vol. 12 (5), p. 983-1006


  1. Fan, G., Thieme, H., and Zhu, H., 2014: Delay differential systems for tick population dynamics. Journal of Mathematical Biology, 71, p. 1017–1048 
  2. Wang, X., Wang, J., Russell, C., Proctor, P., Bello, R., Higuchi, K., and Zhu, H., 2014: Clustering of the abundance of West Nile virus vector mosquitoes in Peel Region, Ontario, Canada. Environmental and Ecological Statistics. 2014
  3. Shan, C., Zhou X., and Zhu, H., 2014: The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River. Bulletin of Mathematical Biology, Vol. 76, p. 1194–1217
  4. Shan C., and Zhu., H., 2014: Bifurcations and Complex Dynamics of an SIR Model with the Impact of the Number of Hospital Beds. Journal of Differential Equations, Vol. 257 (5), p. 1662-1688
  5. Li, C., Li, J., Ma, Z., and Zhu, H., 2014: Canard phenomenon for an SIS epidemic model with nonlinear incidence. Journal of Mathematical Analysis and Applications, Vol. 420 (2), p. 987-1004
  6. Jin, Z., Sun, G., and Zhu, H., 2014: Epidemic Models for Complex Networks with Demographics. Mathematical Biosciences and Engineering. Vol. 11 (6), p. 1295-1317
  7. Wan, H., Zhu, H., 2014: A new model with delay for mosquito population dynamics. Mathematical Biosciences and Engineering, Vol. 11 (6), p. 1395-1410
  8. Abdelrazec, A., Cao, Y., Gao, X., Proctor, P., Zheng, H., and Zhu, H., 2014: West Nile Virus Risk Assessment and Forecasting Using Statistical and Dynamical Models. In the book, "Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases", Editors: Chen, Moulin, Wu. ISBN: 978-1-118-62993-2. WILEY.


  1. Abdelrazec, A., Lenhart, S., and Zhu, H., 2013: Transmission Dynamics of West Nile Virus in Mosquitoes and Corvids and Non-Corvids. Journal of Mathematical Biology, Vol. 68(6), p. 1553-82
  2. Fan, G., Campbell, S.A., Wolkowicz, G., and Zhu, H., 2013: The Bifurcation Study of 1:2 Resonance in a Delayed System of Two Coupled Neurons. J. Dynam. Differential Equations, Vol. 25 (1), p. 193–216
  3. Li, C., and Zhu, H., 2013: Canard Cycles for Predator-Prey Systems with Holling Types of Functional Response. Journal of Differential Equations. Vol. 254,(2), P. 879–910.


  1. Hii, Y.L., Zhu, H.,  Ng, N.,  Ng, L.C., Rocklov, J., 2012: Forecast of Dengue Incidence Using Temperature and Rainfall .  Plos Negl Trop Dis.  6(11)
  2. Wan, H., and Zhu, H., 2012: The Impact of Resource and Temperature on Malaria Transmission. Journal of Biological Systems, Vol. 20 (3), p. 285-302
  3. Ku, H., Lee, K., and Zhu, H., 2012: Discrete Time Hedging with Liquidity Risk. Finance Research Letters, Vol. 9 (3), p. 135-143
  4. Zhao Y., and Zhu, H., 2012: Bifurcation of Limit Cycles from a Non-Hamiltonian Quadratic Integrable System with Homoclinic Loop. In "Infinite Dimensional Dynamical Systems", Fields Institute Communications, V. 64. Editors: John Mallet-Paret, Jianhong Wu, Yingfie Yi and Huaiping Zhu.
  5. Qi, L., Cui, J., Gao, Y., and Zhu, H., 2012: Modeling the Schistosomiasis on the Islets in Nanjing. International Journal of Biomathematics. Vol. 5 (4)


  1. Wang, J., Ogden, N., and Zhu, H., 2011: The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: A case study in Peel region. Journal of Medical Entomology, Vol. 48 (2), p. 468-75
  2. Shan, C., Gao, H., and Zhu, H., 2011: Dynamics of a Delay Schistosomiasis Model in Snail Infections. Math. Biosci. Eng. 8 (2011), Vol. 4, p. 1099–1115


  1. Wan, H., Zhu, H., 2010: The backward bifurcation in compartmental models for West Nile virus. Math Biosci., Vol. 227 (1), p. 20-8
  2. Fan, G., Liu, J., van den Driessche, P., Wu, J., Zhu, H., 2010: The impact of maturation delay of mosquitoes on the transmission of West Nile virus. Math. Biosci., Vol. 228 (2), p. 119-126
  3. Fan, M., Xia, Z. and Zhu, H., 2010: Asymptotic Stability of Delay Differential Equations via Fixed Point Theory and Applications. Canadian Applied Mathematics Quarterly.
  4. Fan, M., Zhang, J., and Zhu, H., 2010: Existence and Roughness of Exponential Dichotomies of Linear Dynamic Equations on Time Scales. Computers and Mathematics with Applications, Vol. 59, p. 2658-2675.


  1. Jiang, J., Qiu, Z., Wu, J., and Zhu, H., 2009: Threshold Conditions for West Nile Virus Outbreaks. Bulletin of Mathematical Biology, Vol. 71 (3), p. 627-647
  2. Buck, P., Liu, R., Shuai, J., Wu, J., and Zhu, H., 2009: Modeling and Simulation Studies of West Nile Virus in Southern Ontario Canada. In the book "Modeling and Dynamics of Infectious Diseases", World Scientific Publishing Company, Incorporated.
  3. Wu, J., and Zhu, H., 2009: International Conference on Infinite Dimensional Dynamical Systems. Dynamical Systems Magazine. April, 2009.


  1. Han, M., Jiang, J., and Zhu, H., 2008: Limit Cycle Bifurcations in Near-Hamiltonian Systems by Perturbing a Nilpotent Center. Internat. J. Bifur. Chaos Appl. Sci. Engrg. Vol. 18 (10), p. 3013-3027
  2. Cui, J., Tao, J., and Zhu, H.,2008: An SIS Infection Model Incorporating Media Coverage. Rocky Mountain Journal of Mathematics, Vol. 38 (5)
  3. Liu, R., Feng, Z., Zhu, H., and DeAngelis, D., 2008: Bifurcation Analysis of a Plant-herbivore Model with Toxin-determined Functional Response. J. Differential Equations, Vol. 245 (2), p. 442-467


  1. Gardam, M., Liang, D., Seyed, M., Wu, J., Zeng Q., and Zhu, H., 2007: The impact of prophylaxis of health care workers on influenza pandemic burden. Journal of the Royal Society, Vol. 4 (15), p. 727–734
  2. Khan, K., Wu, J., Zeng, Q., and Zhu, H., 2007: The Utility of Preemptive Mass Influenza Vaccination in Controlling a SARS Outbreak during Flu Season. Math. Biosci. Eng., Vol. 4 (4), p. 739-754
  3. Han, M., and Zhu, H., 2007: The Loop Quantities and Bifurcations of Homoclinic Loops.  J. Differential Equations. Vol. 234 (2), p. 339-359
  4. Wu, J., Yao, W., and Zhu, H., 2007: Immune System Memory Realization in A Population Model. Discrete and Continuous Dynamical Systems-Series B, Vol. 8 (1), p. 241-259
  5. Liu, R., Wu, J., and Zhu, H., 2007: Media/psychological Impact on Multiple Outbreaks of Emerging Infectious Diseases. Computational and Mathematical Methods in Medicine. Vol. 8 (3), pp153-164
  6. Cui, J., Sun, Y., and Zhu, H., 2007: The Impact of Media on the Control of Infectious Diseases. Journal of Dynamics and Differential Equations. Available on line: May 18, 2007. Vol. 20 (1), 2008


  1. Xiao, D., and Zhu, H., 2006: Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math., Vol. 66 (3), p. 802–819
  2. Li, J., Wu, J., and Zhu, H., 2006: Travelling Waves for an Integrable Higher Order KdV Type Wave Equations. International Journal of Bifurcation and Chaos, Vol. 8, p. 2235-2260
  3. Liu, R., Shuai, J., Wu, J., and Zhu, H., 2005: Modeling Spatial Spread of West Nile virus and Impact of Directional Dispersal of Birds. Math. Biosci. Eng., Vol. 3(1), 145-160


  1. Zhu, H., 2005: From the PP-graphics to the finiteness part of Hilbert's 16th problem for quadratic systems. EQUADIFF, p. 357-362
  2. Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., and Zhu, H., 2005: A Mathematical Model for Assessing Control Strategies against West Nile virus. Bull. Math. Biol., Vol. 67 (5), p. 1107-1133
  1. Feng, Z., Swihart, R., Yi, Y., Zhu, H., 2004: Coexistence in a metapopulation model with explicit local dynamics. Math. Biosci., Vol. 1 (1), p. 131-45
  2. Webb, G.F., Blaser, M.J., Zhu, H., Ardal, S., and Wu, J., 2004: Critical Role of Nosocomial Transmission in the Toronto SARS Outbreak. Math. Biosci. Eng., Vol. 1 (1), p. 1-13
  3. Feng, Z., Yi, Y., and Zhu, H., 2004: Fast and slow dynamics of malaria and the S-gene frequency. J. Dynam. Differential Equations, Vol. 16, p. 869–896
  4. Rousseau, C., and Zhu, H., 2004: PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert’s 16th problem. J. Differential Equations, Vol. 196 (1), p. 169–208


  1. Feng, Z., Yi, Y. and Zhu, H., 2003: Metapopulation Dynamics with Migration and Local Competition. Dynamical systems and their applications in biology (Cape Breton Island, NS, 2001), Fields Inst. Commun., Vol. 36, p.119–135.
  2. Zhu, H., Campbell S.A., and Wolkowicz, G., 2002: Bifurcation analysis of a predator-prey system with nonmonotonic function response. SIAM J. Appl. Math., Vol. 63 (2), p. 636–682
  3. Zhu, H., and Rousseau, C., 2002: Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type. J. Differential Equations, Vol. 178 (2), p. 325–436.
  4. Zhu, H., 1999: Finite Cyclicity of Graphics with a Nilpotent Singularity of Saddle or Elliptic Type, Ph.D. Thesis, Universite de Montreal, Sept. 1999. Saddle Zhu: Original thesis collected by Library and Archives Canada
  5. Zhu, H., 1997: The Dirichlet Problem for a Singular Singularly Perturbed Quasilinear Second Order Differential System, J. Math. Anal. Appl. Vol. 210 (1), p. 308–336
  6. Zhu, H., 1994: A singular singularly perturbed boundary value problem of the second order quasilinear systems, J. Math. Anal. Appl. Vol. 182 (2), p. 320–347
  7. Zhu, H., and Lin, W., 1994: The singularly perturbed Dirichlet problem for a system of conditionally stable quasilinear second-order equations. J. East China Norm. Univ. Natur. Sci. Ed. Vol. 4, p. 15–24
  8. Zhu, H., 1994: The multi-layers solution for a singular singularly perturbed initial boundary value problem. J. Nanjing Norm. Univ. Natur. Ed. Vol.1, p. 1–10
  9. Zhu, H., 1992: A singularly perturbed boundary value problem in the critical case, J. Nanjing Norm. Univ. Natur. Ed. Vol. 4, p. 3–11
  10. Zhu. H., 1991: A Initial-boundary Value Problem for the First Order Singular Perturbed Differential Systems in “Ordinary Differential Equations''. Proceeding of the first Chinese National Conference for Youth on Ordinary Differential Equations. Ed. Y. Qin, Scientific Publishing House. p. 241-247
  11. Zhu H., 1986: A note on Mean Value Theorem in calculus, J. Huaiyin Normal University, Natur. Ed. Vol. 3. (This is the first paper encouraged by Prof. Jiaxiu Ji, Huaiyin Normal University. He was my high school teacher, also known as “Ji Triangle” in Jiangsu Province, China).